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1 Introduction

Bioconductor [3] is a set of R packages for analysis of biological data, with an
emphasis on microarray and other high-throughput datasets.

The bioconductor web site has instructions to install R and bioconductor. I
also highly recommend installing R Studio, a graphical environment for running
R, that groups together a source editor, help, figures, data browsers, and many
other tools. R Studio is available on it’s own website.

This example will use standard affy [2] and limma [4] commands to analyze
example datasets. Bioconductor has extensive help, which you can access in
many ways. One simple way is to type ?foo where you want help on the object
called “foo” (or ??foo to search for relevant topics). You can open an interactive
browser interface to the help system by typing help.start(). In the browser,
you can look at the documentation for the installed packages to find help on
limma and affy.

The limma package, in particular, has an extensive 120 page user’s guide,
with many examples, including around 8 full case studies of high-throughput
data analysis. You can read the guide using the limmaUsersGuide() command.

> library(limma)

> library(affy)

2 Microarrays

2.1 Reading the data

Both limma and affy have many functions to simplify import of microarray
data into the system. See the documentation for readTargets and ReadAffy

for some examples.
In this document, we will instead use sample data that has already been

read into the appropriate R objects.
Affydata is one such example data set.
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> require(affydata)

Package

[1,] "affydata"

LibPath

[1,] "/Library/Frameworks/R.framework/Versions/2.15/Resources/library"

Item Title

[1,] "Dilution" "AffyBatch instance Dilution"

> data(Dilution)

> Dilution

AffyBatch object

size of arrays=640x640 features (35221 kb)

cdf=HG_U95Av2 (12625 affyids)

number of samples=4

number of genes=12625

annotation=hgu95av2

notes=

The Dilution affybatch contains four samples, two each of 20µg and 10µg liver
tissue from human subjects, read on two different scanners (A and B).

> phenoData(Dilution)

An object of class 'AnnotatedDataFrame'
sampleNames: 20A 20B 10A 10B

varLabels: liver sn19 scanner

varMetadata: labelDescription

Examine MA plot for raw data, comparing the 20µg samples on scanner A and
B.

> plotMA(exprs(Dilution)[,c(1,2)])

Dilution will contain the AffyBatch, with the raw expression values for each
probe in each sample, with additional information on the probes and samples.

2.2 Normalization and pre-processing

We can use the rma command to normalize and summarize the probes for each
feature. Prior to the summarization, each feature is represented with four
probes. After the normalization and summarization routine, we have a single
expression value for each feature in each sample.

> probeNames(Dilution)[1:20]

[1] "100_g_at" "100_g_at" "100_g_at" "100_g_at" "100_g_at" "100_g_at"

[7] "100_g_at" "100_g_at" "100_g_at" "100_g_at" "100_g_at" "100_g_at"

[13] "100_g_at" "100_g_at" "100_g_at" "100_g_at" "1000_at" "1000_at"

[19] "1000_at" "1000_at"
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Figure 1: MA plot before normalization
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Figure 2: Box plot before normalization

> eset <- rma(Dilution)

Background correcting

Normalizing

Calculating Expression

> featureNames(eset)[1:10]

[1] "100_g_at" "1000_at" "1001_at" "1002_f_at" "1003_s_at" "1004_at"

[7] "1005_at" "1006_at" "1007_s_at" "1008_f_at"

A boxplot shows the distribution of expression values before (Figure 2) and after
(Figure 3) the normalization.

> boxplot(Dilution)

> boxplot(exprs(eset))
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Figure 3: Box plot after normalization
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2.3 Experimental design

The experiment has a simple design, each sample is labeled in the targets file
with the target it was hybridized with. This information can be used to constuct
a design matrix that identifies each group.

> f <- factor(c("C20","C20","C10","C10"))

> design <- model.matrix(~0+f)

> colnames(design) <- c("C20", "C10")

> design

C20 C10

1 0 1

2 0 1

3 1 0

4 1 0

attr(,"assign")

[1] 1 1

attr(,"contrasts")

attr(,"contrasts")$f

[1] "contr.treatment"

We can fit a model that has a mean for each group, and test if the group
means are different. The eBayes function computes an empirical Bayes factor,
pooling the variances from all the genes to estimate significance.

> cont.matrix <- makeContrasts(conc=C20-C10, levels=design)

> cont.matrix

Contrasts

Levels conc

C20 1

C10 -1

> fit <- lmFit(eset, design)

> fit2 <- contrasts.fit(fit, cont.matrix)

> fit.b <- eBayes(fit2)

2.4 Reporting the results

We now have a model fit that estimates the log ratios between the positive and
negative samples. An MA plot (Figure 4) summarizes the fit. The y axis plots
M , the log ratio of expression in the positive and negative coefficients. The x
axis plots the A, or average log intensity of each gene.

> plotMA(fit.b)

The fit also has an estimate of the Bayes factor, the log odds of differential
expression for each gene. A plot of the B vs log ratios is called a volcanoplot
(see Figure 5).
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Figure 4: MA plot
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Figure 5: Volcano plot

> volcanoplot(fit.b)

Another way to report the results is exporting a table with the most significant
features. Estimated p-values using a number of multiple testing corrections can
be computed, in this case we use the Benjamini & Hochberg correction. [1]

> topTable(fit.b, adjust="BH")

ID logFC AveExpr t P.Value

12579 AFFX-DapX-M_at 0.6068933 7.248605 8.046185 0.0001351863

4143 34103_at -0.4884786 2.945512 -7.624196 0.0001858859

1657 31642_at -0.5097732 2.954299 -7.472093 0.0002092465

12607 AFFX-M27830_5_at 0.5780179 6.203493 6.982726 0.0003104979

2962 32934_i_at -0.4774220 2.961046 -6.301995 0.0005585254

12599 AFFX-HUMRGE/M10098_M_at 0.4273471 5.555700 6.301609 0.0005587188

10990 40886_at 0.4393364 11.308830 5.895455 0.0008118744

12561 AFFX-BioB-5_at 0.4799698 9.407338 5.785891 0.0009008883

8993 38907_at 0.3554734 3.165857 5.503947 0.0011852670

9483 39393_r_at 0.4151446 7.560304 5.320512 0.0014244158
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adj.P.Val B

12579 0.8805792 -1.933454

4143 0.8805792 -1.983803

1657 0.8805792 -2.003599

12607 0.9800091 -2.074075

2962 0.9984512 -2.192581

12599 0.9984512 -2.192656

10990 0.9984512 -2.277300

12561 0.9984512 -2.302214

8993 0.9984512 -2.370834

9483 0.9984512 -2.419237

3 RNA-Seq

3.1 Introduction

Many gene expression studies are turning to RNA-Seq, a form of second-generation
sequencing that sequences products derived from mRNA. RNA-Seq count data
can be analyzed with the same tools we have learned to use for microarrays.
Obtaining count data (also known as digital gene expression data) from raw
RNA-Seq reads is beyond the scope of this guide, but tools such as galaxy [5],
bowtie [6], and trinity [7] can be used to map reads to genes and tally the counts.

3.2 RNA-Seq packages

> library(Biobase)

> library(biomaRt)

> library(edgeR)

3.3 Load ReCount data

ReCount [8] is an online database of RNA-seq data from 18 experiments. These
experiments have already been read into R and are published on the web. R
can load prepared datasets directly from the web:

> gilad <- load(

+ url("http://bowtie-bio.sourceforge.net/recount/ExpressionSets/gilad_eset.RData"))

> gilad

[1] "gilad.eset"

The data is already an Expression Set, with raw counts for each probe, and
information on the samples. This data comes from a published study of gene
expression in liver in males and females of different species [9]. We will use data
from 3 males and 3 females from the human species.

> gilad.eset
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ExpressionSet (storageMode: lockedEnvironment)

assayData: 52580 features, 6 samples

element names: exprs

protocolData: none

phenoData

sampleNames: SRX014818and9 SRX014820and1 ... SRX014828and9 (6 total)

varLabels: sample.id num.tech.reps gender

varMetadata: labelDescription

featureData

featureNames: ENSG00000000003 ENSG00000000005 ... LRG_99 (52580

total)

fvarLabels: gene

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation:

> phenoData(gilad.eset)$gender

[1] F F F M M M

Levels: F M

> exprs(gilad.eset)[1:5,]

SRX014818and9 SRX014820and1 SRX014822and3 SRX014824and5

ENSG00000000003 60 60 16 9

ENSG00000000005 0 0 0 0

ENSG00000000419 25 9 15 15

ENSG00000000457 32 19 21 31

ENSG00000000460 1 3 0 5

SRX014826and7 SRX014828and9

ENSG00000000003 56 37

ENSG00000000005 0 0

ENSG00000000419 26 11

ENSG00000000457 28 28

ENSG00000000460 1 1

3.4 Removing genes that are not expressed

Many genes are not present in any sample, it is simpler to remove these before
continuing.

> isexpr <- rowSums(cpm(exprs(gilad.eset))>1) >= 3

> sum(isexpr)

[1] 8069

> gilad.isexpr <- gilad.eset[isexpr,]
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3.5 Normalize the counts

Limma provides a routine, voom, designed to normalize digital gene expression
data.

> nf <- calcNormFactors(gilad.isexpr)

> groups <- phenoData(gilad.isexpr)$gender

> design <- model.matrix(~ groups)

> y <- voom(exprs(gilad.isexpr),design,

+ lib.size=colSums(exprs(gilad.isexpr))*nf,

+ normalize.method="quantile")

3.6 Build a linear model

Once we have log-normalized counts, we can proceed to construct a linear model,
using the same tools we used for one-color (Affymetrix) arrays.

> fit <- lmFit(y,design)

> fit <- eBayes(fit)

> topTable(fit, coef=2)

ID logFC AveExpr t P.Value adj.P.Val

286 ENSG00000049239 1.4179955 8.353328 4.932432 0.0006353586 0.9932438

1774 ENSG00000110244 -2.4011726 6.693654 -4.493731 0.0012221106 0.9932438

5957 ENSG00000174718 -0.9099697 7.477112 -3.614733 0.0049090586 0.9932438

191 ENSG00000023330 0.9631780 7.737762 3.342743 0.0076923282 0.9932438

6993 ENSG00000187837 -1.0631848 6.102709 -3.413789 0.0068359089 0.9932438

7743 ENSG00000214456 1.0644053 6.614080 3.275959 0.0085985800 0.9932438

4913 ENSG00000164626 -1.0201108 6.587511 -3.254500 0.0089125858 0.9932438

5654 ENSG00000171051 -1.5657336 5.564722 -3.758463 0.0038844280 0.9932438

3045 ENSG00000133392 -1.4710554 7.721775 -3.134114 0.0109064995 0.9932438

4827 ENSG00000163513 -0.7220998 7.084751 -3.117506 0.0112154685 0.9932438

B

286 -4.224938

1774 -4.278461

5957 -4.313473

191 -4.336530

6993 -4.354120

7743 -4.354584

4913 -4.355630

5654 -4.356174

3045 -4.356915

4827 -4.360486

3.7 Volcanoplot model fit

The fit can be summarized using the same reporting tools as before.
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> volcanoplot(fit,coef=2)
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