Bioinformatics and Computational Biology

Humberto Ortiz Zuazaga

University of Puerto Rico
High Performance Computing facility

July 16, 2009



Bioinformatics

“The creation and advancement of algorithms, computational and
statistical techniques, and theory to solve formal and practical
problems posed by or inspired from the management and analysis
of biological data.” — Wikipedia



Computational biology

The application of computers to the collection, analysis, and
presentation of biological information.



Electrophysiological data collection

Steinacker A, Zuazaga DC. Changes in neuromuscular junction
endplate current time constants produced by sulfhydryl reagents.
Proc Natl Acad Sci U S A. 1981 Dec;78(12):7806—-7809.



Data collection system

Digital Equipment Corporation (DEC) PDP-11. Replaced high
speed camera pictures of oscilloscope followed by manual
measurement of trace heights encoded on a deck of punched cards
for processing by IBM mainframe in Facundo Bueso.



Electrophysiological simulation
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A. L. Hodgkin and A. F. Huxley. A quantitative description of
membrane current and its application to conduction and excitation
in nerve. J Physiol. 1952 August 28; 117(4): 500-544.



Electrophysiological verification
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Computed action potentials on top, experimental action potentials
on bottom. Awarded the 1963 Nobel Prize in Physiology or
Medicine.



Moore's law

CPU Transistor Counts 1971-2008 & Moore’s Law
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Image from Wikimedia commons by Wgsimon, used with
permission.



Larger scale simulations
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N. Sperelakis, H. Ortiz-Zuazaga, and J. B. Picone. Fast
conduction in the electric field model for propagation in cardiac
muscle. Innov. et Tech. en Biol. et Med., 12(4):404-414, 1991.



Larger scale results

60 -

301

Ve (mV)

-30

—60 4

-90 : " i
0 1 2 3
Time (msec)



The end of Moore's law
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Where's my 4 GHz processor?



Simulation of groundwater contamination

FILE SITE UIEW MAP QUERY REPORT OPTIONS LOCATE COST SIMUL  ENU

A GRACE interface for GRASS. John Franco and Humberto
Ortiz-Zuazaga. U.S. Army Corps of Engineers, $75,000,
1994-1995.



Neural network processing of cardiotocograms
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B. E. Rosen, D. Soriano, T. Bylander, and H. Ortiz-Zuazaga.
“Training Neural Networks to recognize Artifacts and
Decelerations in Cardiotocograms.” AAAI Symposium on Artificial
Intelligence in Medicine. pp. 149-153, 1996.



Genetic Mapping

» Goal: The determination of orders and distances among
markers on a chromosome based on the observed patterns of
inheritance of the alleles of the markers in three generation
pedigrees.

» Problem: For a variety of reasons the genotypic information is
not complete, and not all crosses in human pedigrees are
informative. In addition, the time required to order markers
grows exponentially with the number of markers.

» Solution: Only use “good” markers to make maps. Biologists
already have a notion of a “framework” map, a map of a
subset of the markers which has very high odds against
inversion of adjacent markers.



Meiotic breakpoints

From http://www.stanford.edu/group/Urchin/



A genotyped pedigree

Pedigree: 1331
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Counting obligate breaks as an estimate of genetic distance

A simple estimate of the genetic distance between two markers is
the number of observed recombinations between the markers in the
data set. For the first two markers in our sample pedigree we
would have:

uTtgslr UMUMUMUMUM UM
UT1398PPPMMMPPPMMM
Breaks‘ 1 1

for a total of 2 breaks.
This technique based on counting the number of recombinations is
known as meiotic breakpoint analysis (BPA).



Selecting genetic markers with wclique

» Each marker becomes a node of a graph.
» The weight of the node is the total count of P and M phases
for this marker.

» Two nodes in the graph are connected by an edge whose
weight is the number of breaks between the corresponding
markers.



A small distance graph




Finding framework markers is a graph problem

» Finding a good set of framework markers is now a graph
problem: find a set of nodes with maximal weight where all
the nodes are connected by an edge of weight e or higher.

» This graph problem is called Maximal Weighted Clique
(MWCQ).



The maximal weighted clique problem is NP-complete

» The MWC is a well known graph problem, extensively studied
in computer science. Unfortunately, it belongs to the class of
NP-complete problems, for which there is unlikely to be an
efficient algorithm.

» Building a linear map by ordering genetic markers so as to
minimize the number of recombination events in a set of
gametes can also be cast as a graph problem, the traveling
salesman problem (TSP), which is also NP-complete.



But | still need a map

» Exact algorithms can work on small sets of markers.

» Local search techniques can find near optimal solutions for
some of these problems, at the cost of not knowing if an
optimal solution was ever found. The best heuristics for TSP
can find a solution with 1.05 times the optimal cost.

» A change in the formulation of the problems can enable other
algorithms to be used. For example, if the data had no errors,
was complete, and no double recombination events occurred,
ordering genetic markers would be equivalent to the
consecutive ones problem (C1P) for which there are linear
time algorithms.



Searls plot of unselected markers
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Searls plot of wclique-selected markers
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Comparison of MLA maps of hand-selected and
wclique-selected markers
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“Moore’s law” for sequence data

Growth of the Genebank sequence database
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From the June 15 2009 NCBI-GenBank Flat File Release 172.0



Gene expression networks

» Complete genomes available for several species.
» 40,000 human genes, many already sequenced.

> microarrays can measure expression levels for ALL GENES in
a single assay.



Microarray image

Reproduced from www.molecularstation.com



Microarray data

Raw log ratio vs log intensity for two color microarrays.



Microarray analysis
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Find the differentially expressed genes.



“Moore’s law” for microarrays

Features

Feature count on commercially available arrays
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Boolean Genetic Network Model

We define Boolean Genetic Network Model (BGNM):
» A Boolean variable takes the values 0, 1.

» A Boolean function is a function of Boolean variables, using
the operations A, V, —.

A Boolean genetic network model (BGNM) is:

» An n-tuple of Boolean variables (xi, ..., x,) associated with
the genes
» An n-tuple of Boolean control functions (f1,. .., ),

describing how the genes are regulated



Boolean genetic networks
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Previous results on Boolean networks

» Determining if a given assignment to all the variables is
consistent with a given gene network was shown to be
NP-complete in [1] (by reduction from 3-SAT).

» In the worst case, 2(""1)/2 experiments are needed

> If the indegree of each node (the genes that affect our target
gene) is bound by a constant D, the cost is O(n?P).

» For low D, [2] and [3] provide effective procedures for reverse
engineering, assuming any gene may be set to any value.



Reverse engineering Boolean networks
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The world's smallest finite field

The integers 0 and 1, with integer addition and multiplication
modulo 2 form the finite field Z, = {{0,1},+,-}.
The operators + and - are defined as follows:
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Finite field equivalents to the Boolean operators

We can realize any Boolean function as an expression over Z:

XANY = XY
XVY = X4+Y+X-Y
-X = 14X



Finite field genetic networks

Any BGNM can be converted into an equivalent model over Z, by
realizing the Boolean functions as sums-of-products and
products-of-sums, then converting the Booleans to Z>. We now
have a finite field genetic network (FFGN):

» An n-tuple of variables over Z5, (xi, ..., Xx,) associated with
the genes
» An n-tuple of functions over Z,, (fi,...,f,), describing how

the genes are regulated
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Molecular phylogeny
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Filipa Godoy-Vitorino, Ruth E. Ley, Zhan Gao, Zhiheng Pei,
Humberto Ortiz-Zuazaga, Luis R. Pericchi, Maria A.
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