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Bioinformatics

The application of computers to the collection, analysis, and

presentation of biological information.
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Taxonomy (of the talk)

• Sequence analysis

• Structure prediction

• Genetic and physical mapping

• Gene expression networks
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Pairwise sequence alignments

Given a pair of sequences over an alphabet Σ, and a cost func-

tion that assigns a cost to an alignment, find an alignment of

the strings that minimizes the cost.

• This problem is central to many biological programs (ho-

mology searches, multiple alignments, molecular phylogeny,

exon prediction, protein threading, ...)

• Usually solved by Dynamic Programming.
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Alignment dynamic programming table
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The solved alignment
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Multiple sequence alignments

• Assign a cost to alignments of multiple sequences.

• Sum of pairs metric, add all pairwise alignments together.

• NP-complete for the SP metric.

• Other heuristics must be used for practical programs (Divide

and Conquer, HMM’s).
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A sample multiple alignment
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The H-P model of globular proteins

Simple model first postulated by Ken Dill [1].

• Amino acids are hydrophobic (H, nonpolar) or hydrophilic

(P, polar).

• H-H contacts contribute -1 to the energy of the protein.

• all other contacts contribute 0.

• Protein structures are constrained to self-avoiding paths on

a regular lattice.
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H-P proteins on a regular lattice
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The Protein Folding problem

Given a sequence s and an integer E, is there a fold that has

−E or lower energy?

• Has been shown to be NP-complete in 2D (HAMILTONIAN

PATH) [2]

• MAXSNP-complete in 3D [2]

• Can be approximated to 3/8 of optimal in linear time in

3D [3]
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The Inverse Protein Folding (IFP) problem

Given a target structure or conformation of a protein G, find a

sequence s of length n that:

• Has G as is it’s minimum energy state.

• Has the lowest degeneracy (number of other conformations

with the same energy) of any possible sequence.
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The Heuristic Sequence Design (HSD) problem

IFP is conjectured to be NP-complete, the best known algo-

rithm must search over all possible conformations of all possible

sequences. HSD problems try to simplify the computation by

restricting the problem.

• The Canonical Method: find the sequence with at most λn

hydrophobic residues.

• The Grand Canonical Method: Change the energy function

so that H-H contacts have -2, an exposed H residue has 1,

and all other interactions have 0.
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Computational Results

• The Canonical Method is NP-complete (reduction from SUBSET-

SUM), but there are algorithms that can approximate the

energy of the optimal solution (OPT) to 1+OPT on 2D

lattices, and 1/2 OPT on 3D lattices [4].

• The Grand Canonical Method can be solved in polynomial

time.
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Genetic Mapping

• Goal: The determination of orders and distances among
markers on a chromosome based on the observed patterns of
inheritance of the alleles of the markers in three generation
pedigrees.

• Problem: For a variety of reasons the genotypic information
is not complete, and not all crosses in human pedigrees are
informative. In addition, the time required to order markers
grows exponentially with the number of markers.

• Solution: Only use “good” markers to make maps. Biolo-
gists already have a notion of a “framework” map, a map
of a subset of the markers which has very high odds against
inversion of adjacent markers.
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A genotyped pedigree
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Counting Obligate Breaks as an Estimate of Genetic

Distance

A simple estimate of the genetic distance between two markers

is the number of observed recombinations between the markers

in the data set. For the first two markers in our sample pedigree

we would have:

UT851 U M U M U M U M U M U M
UT1398 P P P M M M P P P M M M
Breaks 1 1

for a total of 2 breaks.

This technique based on counting the number of recombinations

is known as meiotic breakpoint analysis (BPA).
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Selecting Genetic Markers With wclique

We have implemented an algorithm for screening markers for

genetic mapping by transforming the marker selection problem

into a maximum weighted clique (MWC) problem.

Each marker becomes a node of a graph. The weight of the

node corresponds to the frequency of known phases (i.e., the

total count of P and M phases) for this marker. This mea-

sure directly reflects how informative each marker is for linkage

analysis.

Two nodes in the graph are connected by an edge whose weight

is the number of breaks between the corresponding markers.

This is a heuristic estimate for genetic distance, but has been

shown to result in correct marker orders as the number of ga-

metes tends to infinity.
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A Small Distance Graph
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The Maximal Weighted Clique problem is NP-Complete

The MWC is a well known graph problem, extensively studied in

computer science. Unfortunately, it belongs to the class of NP-

complete problems, for which there is unlikely to be an efficient

algorithm.

Building a linear map by ordering genetic markers so as to min-

imize the number of recombination events in a set of gametes

can also be cast as a graph problem, the traveling salesman

problem (TSP), which is also NP-complete.
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But I Still Need a Map

• Exact algorithms can work on small sets of markers.

• Local search techniques can find near optimal solutions for

some of these problems, at the cost of not knowing if an

optimal solution was ever found. The best heuristics for

TSP can find a solution with 1.05 times the optimal cost.

• A change in the formulation of the problems can enable

other algorithms to be used. For example, if the data had no

errors, was complete, and no double recombination events

occurred, ordering genetic markers would be equivalent to

the consecutive ones problem (C1P) for which there are

linear time algorithms.
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Searls plot of unselected markers
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Searls plot of wclique-selected markers
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Comparison of MLA Maps of Hand-Selected and

wclique-Selected Markers
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Gene expression networks

• Complete genomes available for several species.

• 40,000 human genes, many already sequenced.

• microarrays can measure expression levels for ALL GENES

in a single assay.
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Boolean Genetic Network Model

In [2] we define Boolean genetic network model (BGNM):

• A Boolean variable takes the values 0, 1.

• A Boolean function is a function of Boolean variables, using
the operations ∧, ∨, ¬.

A Boolean genetic network model (BGNM) is:

• An n-tuple of Boolean variables (x1, . . . , xn) associated with
the genes

• An n-tuple of Boolean control functions (f1, . . . , fn), describ-
ing how the genes are regulated
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Results on Boolean Networks

• Determining if a given assignment to all the variables is

consistent with a given gene network was shown to be NP-

complete in [1] (by reduction from 3-SAT).

• In the worst case, 2(n−1)/2 experiments are needed

• If the indegree of each node (the genes that affect our target

gene) is bound by a constant D, the cost is O(n2D).

• For low D, [2] and [3] provide effective procedures for reverse

engineering, assuming any gene may be set to any value.
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The World’s Smallest Finite Field

The integers 0 and 1, with integer addition and multiplication

modulo 2 form the finite field Z2 = {{0,1},+, ·}.

The operators + and · are defined as follows:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1
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Finite field equivalents to the Boolean operators

We can realize any Boolean function as an expression over Z2:

X ∧ Y = X · Y
X ∨ Y = X + Y + X · Y

¬X = 1 + X
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Finite Field Genetic Networks

Any BGNM can be converted into an equivalent model over

Z2 by realizing the Boolean functions as sums-of-products and

products-of-sums, then converting the Booleans to Z2. We now

have a finite field genetic network (FFGN):

• An n-tuple of variables over Z2, (x1, . . . , xn) associated with

the genes

• An n-tuple of functions over Z2, (f1, . . . , fn), describing how

the genes are regulated
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