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Maŕıa Alicia Aviño-Diaz, and Dorothy Bollman.

Introduction: Dbnm and the reverse engineering

problem.

In [3] Ideker, Thorsson and Karp describe a genetic network model based on Boolean net-
works, the deterministic Boolean network model or dBnm. In their model, gene levels or
external biological stimuli can have two values (on or off). This is a greatly simplified bio-
logical model, which has the advantage of allowing simple computational analysis. Taking
the model definition from this paper, we can describe a genetic network as:

1. A graph consisting of N numbered nodes and, 1 ≤ n ≤ N .

2. A set of directed edges between nodes.

3. A Boolean function fn for each node.

4. An edge from a node to another represents an influence of the first node on the ex-
pression of the second.

x1 1 0 1 0
x2 1 1 0 0
x3 0 0 1 0

x0 := 1
x1 := 1
x2 := x0 and x1

x3 := x1 and not x2

Figure 1: Example of the Boolean steady-state network model: (a) a directed graph structure
with numbered nodes connected by edges, (b) the truth table (shown for node 3 only) and
(c) the logic equations for each node.
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Figure 1 reproduced from [3] represents a small example genetic network with 4 nodes and
4 edges. For a set of genes or stimuli and a set of perturbation experiments the authors
construct an expression matrix as in Figure 2.

x0 x1 x2 x3

E =

1 1 1 0 p0

− 1 0 1 p1

1 − 0 0 p2

1 1 − 1 p3

1 1 1 + p4

Figure 2: Example expression matrix generated from the generic network in Figure 1.

The symbols + and- in the expression matrix represent genes or stimuli that are forced to 1
or 0, respectively. From this expression data, the challenge is to reconstruct or reverse engi-
neer the genetic network. Ideker et al describe two inference procedures can reconstruct the
genetic network interactively, suggesting new biological experiments to complement the ex-
isting data. From the expression matrix, the Predictor generates (possibly several) network
hypothesis. The Chooser selects a new perturbation experiment, that would best discrimi-
nate between available hypotheses. Infering the network from the data in this manner means
solving what is called the reverse engineering problem.

Our Definition of the dBnm.

We understand that the following is a formalization of the model presented in [3].

Definition 1. A Boolean variable assumes the values 0,1.

Definition 2. A Boolean function is a function involving Boolean variables and the opera-
tions and, or, not with the following definitions:

X Y X and Y X or Y Not X
1 1 1 1 0
1 0 0 1 0
0 1 0 1 1
0 0 0 0 1

Definition 3. A dBnm is a set of n Boolean variables (x1, . . . , xn), and a set of n Boolean
functions (f1, . . . , fn). The Boolean variables represent genes or stimuli, and the Boolean
function fi represents how the gene i is determined by all the other genes.
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Lemma 1 Given n Boolean variables (x1, . . . , xn) and define f(x1, . . . , xn) for all possible
values. Then there is a Boolean function that coincides with f as defined.

Proof: See any book on computer architecture ([9]) for realizing a Boolean function as sums
of products and products of sums.

Deterministic Finite Field Network Models with Stimuli

In [8] a finite state system is defined to study the behavior of various types of systems as an
idealized model for a large number of phenomena.

Definition 4. A (complete, deterministic) finite state system1M is defined as follows:

1. A finite, nonempty set U = {α1, α2, . . . , αh}, called the input alphabet of M . An
element of U is called an input symbol.

2. A finite, nonempty set Y = {β1, β2, . . . , βs}, called the output alphabet of M . An
element of Y is called an output symbol.

3. A finite, nonempty set S = {σ1, σ2, . . . , σr}, called the state set of M . An element of
S is called a state.

4. A next-state function f that maps the set of all ordered pairs (σi, αj) into S.

5. An output function g that maps the set of all ordered pairs (σi, αj) into Y .

A generalization of a FSS where the input and output alphabets carry the structure of a
vector space over a finite field.

Definition 5. A modular system (MS) M of order n over GF(q) is defined by the following:

1. a k−dimensional vector space U over GF(q), called input space of M , the elements of
which are called inputs and are written as column vectors.

2. An m−dimensional vector space Y over GF(q), called output space of M , the elements
of which are called outputs and are written as column vectors.

3. An n−dimensional vector space S over GF(q), called state space of M , the elements
of which are called states and are written as column vectors.

1In the computer science literature a finite state system is called a Mealy machine and finite state system
with Y = φ is called a finite automata.
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If the next-state and output functions are linear it is called a linear MS (LMS) and the
following must hold:

1. Four characterizing matrices over GF(q):

A = (aij)n×m, B = (bij)n×k, C = (cij)m×n, D = (dij)m×k.

The matrix A is called the characteristic matrix of M .

2. A rule relating the state at time t + 1 and output at time t to the state and input at
time t:

s(t + 1) = As(t) + Bu(t),y(t) = Cs(t) + Du(t).

Using this definition and the definition of dFGnm in [20] we can defined a deterministic finite
field genetic network model with stimuli as follows:

Definition 6. A Deterministic Finite Field Network Models with Stimuli (dFGnms) is
a MS of order n over GF(q) where the stimuli determines the input space U and S =
{(γ1, γ2, . . . , γn)T | γi are the values of the gene i}. The rest follows the definition of dFGnm
in [20].

Note that a deterministic boolean network model with stimuli (dBnms) is a specific case of
a dFGnms where q = 2.

An example of a dBnms can be constructed from the example shown in Figure 1, with the
set of stimuli define as {p0, p1, p2, p3, p4} where p1 changes x0, p2 changes x1, p3 changes x2

and p4 changes x3 as in the table of Figure 2. This table shows an example where the first
state is (1, 1, 1, 0) but the same method can be follow in general.

Error Correction in Genetic Networks.

Our finite field deterministic genetic network model from previous sections can be endowed
with error correcting capabilities in the following manner. First, from the biological data we
inferred the model that fits this data using the method described in previous sections. It was
also proven that this model is a finite dynamical system. Once the finite dynamical system
(also called finite state machine or linear automata) has been inferred, we can provide the
error correction by constructing a trellis diagram (see Example 1).

We will use the Viterbi algorithm to find the path that the process took with maximum
likelihood. This algorithm, introduced in [5] for the decoding of convolutional codes, was
proven ([6, 7]) to select the path that gives the largest value of the likelihood function. In
general it can be used in any system where the next state depends on past states, like a
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hidden Markov chain. A version of this algorithm that outputs the probabilities of the paths
instead of only the best path (called soft-Viterbi) will also be useful for future research of
our continuous model described in a previous section.

Example 1. In the following figures we can generate a machine and its trellis from an MS.
This is done by expanding the state diagram in time, representing each time unit with a
separate state diagram.

S0

S2 S1

S3

0/0

a/a

1/1 a2/a2

a/1

a2/0

1/a

0/a2

a/a2
1/0

0/a

a2/1

a2/a

a/0

0/1
1/a

Figure 3: Finite State Machine or FDS from an MS
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Figure 4: Trellis for error correction in the machine of Figure 3.
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