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Background
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A Model Cell
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Post Genome Biology

or, “I’ve got all the genes, now what do I do with them?”
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Reverse Engineering Genetic Networks

• Input:

– A set of genes

– A set of gene expression measurements

• Output:

– A set of control functions by which some genes control

others
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Boolean Genetic Networks

2 4

1 3

f1 = 1
f2 = 1
f3 = x1 ∧ x2
f4 = x2 ∧ ¬x3
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Boolean Genetic Network Model

We define Boolean genetic network model (BGNM):

• A Boolean variable takes the values 0, 1.

• A Boolean function is a function of Boolean variables, using

the operations ∧, ∨, ¬.

A Boolean genetic network model (BGNM) is:

• An n-tuple of Boolean variables (x1, . . . , xn) associated with

the genes

• An n-tuple of Boolean control functions (f1, . . . , fn), describ-

ing how the genes are regulated
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Reverse Engineering Boolean Networks

• Akutsu, S. Kuahara, T. Maruyama, O. Miyano, S. 1998.

Identification of gene regulatory networks by strategic gene

disruptions and gene overexpressions. Proceedings of the

9th ACM-SIAM Symposium on Discrete Algorithms (SODA

98), H. Karloff, ed. ACM Press.

• Ideker, T.E., Thorsson, V., and Karp, R.M. 2000. Discovery

of regulatory interactions through perturbation: inference

and experimental design. Pacific Symposium on Biocom-

puting 5:302-313.

• S. Liang, S. Fuhrman and R. Somogyi. 1998. REVEAL,

A General Reverse Engineering Algorithm for Inference of

Genetic Network Architectures. Pacific Symposium on Bio-

computing 3:18-29.
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Boolean results

• Problem: Consistent assignment

• Input: a gene network and an assignment of True or False

to each variable

• Output: True if the assignment is consistent with the rules

of the network, False otherwise

• Result: Akutsu et al prove this problem is NP-complete (by

reduction from 3-SAT)
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Perturbation experiments

• Problem: how many experiments do I need to do?

• Input: a gene network with n genes

• Output: the number of gene knockdown (force gene to 0)

or overexpression (force gene to 1) experiments needed to

completely determine the genetic network

• Result: worst case, 2(n−1)/2

• Result: if the degree (number of genes that act on a gene)

is limited to D, O(n2D)

Further work proceeds on the assumption that D = 2 or D = 3.
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Boolean Bugs

• Boolean variables can only represent all-or-none effects

• Boolean models are deterministic

• Efficient algorithms for Boolean networks require indegree

of genes to be limited to a small constant value (i.e., at

most 2 or 3 transcription factors act on any given gene)

Finite fields represent an alternative algebraic structure to sub-

stitute Booleans. Our research seeks to characterize genetic

networks based on these fields.
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Finite field models

• Each gene can be an element of a finite field

• Multivariate polynomial models

• Based on computing Gröebner bases and ideals

Laubenbacher, R. and Stigler, B. (2004), ‘A computational al-

gebra approach to the reverse engineering of gene regulatory

networks’, J. Theor. Biol. 229, 523–537.
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Finite Fields

A finite field {F,+, ·} is a finite set F , and two operations +

and · that satisfy the following properties:

• ∀a, b ∈ F , a + b ∈ F , a · b ∈ F

• ∀a, b ∈ F , a + b = b + a, a · b = b · a

• ∀a, b, c ∈ F , a + (b + c) = (a + b) + c, (a · b) · c = a · (b · c)

• ∀a, b, c ∈ F , a · (b + c) = (a · b) + (a · c)

• ∃0,1 ∈ F , a + 0 = 0 + a = a, a · 1 = 1 · a = a

• ∀a ∈ F , ∃(−a) ∈ F s.t. a + (−a) = (−a) + a = 0

∀a 6= 0 ∈ F, ∃a−1 ∈ F s.t. a · a−1 = a−1 · a = 1
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The World’s Smallest Finite Field

The integers 0 and 1, with integer addition and multiplication

modulo 2 form the finite field Z2 = {{0,1},+, ·}.

The operators + and · are defined as follows:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1
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Products of Sums and Sums of Products

We can realize any Boolean function as an expression over Z2:

X ∧ Y = X · Y
X ∨ Y = X + Y + X · Y

¬X = 1 + X

This perspective unites the mathematical foundation of finite

fields with the logic of Boolean networks, but remaining within

the realm of communications science.
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Probabilistic Boolean Networks

• Each gene may have many controlling functions, select among

them by random process.

• Generate predictors by enumerating all k-input functions for

each gene, tractability requires restricting k to a small inte-

ger (4)

• Selection probabilities proportional to coefficient of deter-

mination of the given gene by a predictor

Shmulevich, I., Dougherty, E. R., Kim, S. and Zhang, W. (2002),

‘Probabilistic boolean networks: a rule-based uncertainty model

for gene regulatory networks’, Bioinformatics 18(2), 261–274.
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Probabilistic Sequential Systems

• Generalize BPN to GF(p)

• Combine sequential dynamical systems and PBN

Aviñó, M. A., Bulancea, G. and Moreno, O. (2005), Probabilis-

tic sequential systems, in ‘Proceedings GENSISP’.
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Conditioned taste aversion (CTA)

• associative aversive conditioning paradigm

• Animals are exposed to a novel taste, the conditioned stim-

ulus

• An unconditioned stimulus induces malaise

• The animals develop a long lasting aversion to the condi-

tioned stimulus
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CTA Dataset

• two controls, the pre-treatment group and the one hour

saline group

• four time points, 1, 3, 6, and 24 hours after conditioning

• 1185 genes on each spotted array

• 5 biological replicates of each array

Chiesa, R., Ortiz-Zuazaga, H. G., Ge, H. and Peña de Ortiz,

S. (2000), Gene expression profiling in emotional learning with

cDNA microarrays, in ‘40th meeting of the American Society

for Cell Biology’, San Francisco, California.
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Objectives and Preliminary Results
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Objectives

1. To develop new algorithms and heuristics for clustering and

error correction, building on finite field models of gene ex-

pression networks, and majority logic decoding.

2. To develop new algorithms and heuristics for reverse engi-

neering probabilistic models, extending univariate polynomial

finite field models
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Objective 1

To develop new algorithms and heuristics for clustering and error

correction, building on finite field models of gene expression

networks, and majority logic decoding
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Finite Field Genetic Networks

Any BGNM can be converted into an equivalent model over
Z2 by realizing the boolean functions as sums-of-products and
products-of-sums. We now have a finite field genetic network
(FFGN):

• An n-tuple of variables over Z2, (x1, . . . , xn) associated with
the genes

• An n-tuple of functions over Z2, (f1, . . . , fn), describing how
the genes are regulated

Revrese engineering can be done using Lagrange interpolation
of univariate polynomials from the time series data.

Moreno, O., Ortiz-Zuazaga, H., Corrada Bravo, C. J., Aviñó-
Diaz, M. A. and Bollman, D. (2004), ‘A finite field deterministic
genetic network model’, Preprint.
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FFGN Models

• Finite field models are an improvement on Boolean network

models

• Laubenbacher’s multivariate polynomial representation of net-

works utilizes Gröebner bases, a somewhat esoteric area

• Bollman and Orozco have demonstrated that multivariate

and univarite polynomial models are equivalent

• Our approach is to bring the tools of modern communica-

tions science to bear on the problem of analyzing regularoty

networks

Bollman, D. and Orozco, E. (2005), Finite field models for

genetic networks. Preprint.
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Error correction

A01a glypican 1; HSPG M12; nervous system cell-surface hep-

aran sulfate proteoglycan

Repetition Pre Sal 1 h 3 h 6 h 24h
1 0.172 0.099 0.176 0.142 0.062 0.152
2 0.274 0.168 0.126 0.114 0.104 0.276
3 0.003 0.119 0.552 0.178 0.193 0.114
4 0.114 0.139 0.6 0.311 0.179 0.181
5 0.04 0.006 0.172 0.103 0.036 -0.047

average 0.121 0.106 0.325 0.17 0.115 0.135
control 0.113
epsilon 0.022
calls + + 0 0
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Majority logic

Repetition 1 h 3 h 6 h 24h
1 + 0 − 0
2 − − − +
3 + + + +
4 + + + +
5 + + 0 −

consensus + + ? +
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Substituting averaged controls

Repetition 1 h 3 h 6 h 24h
1 + + − +
2 0 0 0 +
3 + + + 0
4 + + + +
5 + 0 − −

cvac + + ? +
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Pruning extreme values

Repetition Pre Sal 1 h 3 h 6 h 24h
1 — 0.099 0.176 0.142 — 0.152
2 — — 0.126 0.114 0.104 —
3 0.003 0.119 — — 0.193 0.114
4 0.114 0.139 — — 0.179 0.181
5 0.04 — 0.172 0.103 — —

new average 0.052 0.119 0.158 0.12 0.159 0.149
new control 0.086
new epsilon 0.063
new calls + 0 + 0
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Consistent calls

1. at least two of the above set of calls agrees in the last 4

columns of data (1 h, 3 h, 6 h, and 24h)

2. either the 1 h or the 24 h columns is a “0”

3. across the last 4 columns of data, the column exhibits the

consecutive zeros property (i.e., values do not oscillate be-

tween “0” and “+” or “−”)
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A01a is not consistent

1 h 3 h 6 h 24h
average calls + + 0 0
consensus + + ? +

cvac + + ? +
new calls + 0 + 0
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Clustering

• Categorizing each timepoint for each gene into coarse divi-

sions yields a clustering of genes

• In our current experiment there are 34 = 81 possible clusters

that a gene may fall into

• Longer time series or larger fields will allow finer grained

division of the genes into clusters

31



Results

• 127 consistent genes in CTA dataset

• Grouping genes with same calls in 1 h – 24 h timepoints

yields 23 clusters

• Obtained upstream sequences for “000+” cluster (1020 bp,

800 bp before start of transcription) expression most similar

to CREB

• Searched for transcription factor binding sites with TESS

• Found two very interesting genes: Pmch and Calca, both

have CRE sites

• These genes were excluded from analysis using traditional

microarray techniques, and thus would have been missed
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Pmch

• Cyclic neuropeptide

• Affects appetite or metabolism

• Induces hippocampal synaptic transmission

Varas, M., Perez, M., Ramirez, O. and de Barioglio, S. (2002),

‘Melanin concentrating hormone increase hippocampal synaptic

transmission in the rat’, Peptides 23(1), 151–155.
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Calca

• Vasodilator

• May be involved in axonal regeneration

• May be involved in synaptogenesis

Li, X. Q., Verge, V. M., Johnston, J. M. and Zochodne, D. W.

(2004), ‘CGRP peptide and regenerating sensory axons’, J. Neu-

ropathol. Exp. Neurol. 63(10), 1092–1103.
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Objective 2

To develop new algorithms and heuristics for reverse engineer-

ing probabilistic genetic network models, extending univariate

polynomial finite field models
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Probabilistic finite field network

• PFFN A = A(V, F, C)

• n nodes V = {x1, x2, . . . , xn}, representing the genes

• xi ∈ GF(pm)

• a list for each gene F = {F1, F2, . . . , Fn} of sets

• the sets Fi = {f(i)
1 , f

(i)
2 , . . . , f

(i)
l(i)} contain functions

• each function f
(i)
j : GF(pm)n → GF(pm) is called a predictor

• a list C = {c(i)j }i∈I, j∈J, of selection probabilities.

• The selection probability that a given predictor f
(i)
j is used

to update the value of a gene xi is c
(i)
j
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PFFN Example

• PFFN A = (V, F, C)

• V = {X0, X1, X2, X3}, Xi ∈ GF(22)

• F = {F0, F1, F2, F3}

– F0 = {f(0)
0 = 0, f

(0)
1 = 1}

– F1 = {f(1)
0 = 0, f

(1)
1 = 1}

– F2 = {f(2)
0 = X0 ·X1, f

(2)
1 = X0 + X1}

– F3 = {f(3)
0 = X1 · (X2 + 1), f(3)

1 = X0 + X1}

• C = {c(i)j }i∈{0,1,2,3},j∈{0,1}

• c
(i)
j = 0.5 for all i ∈ {0,1,2,3}, j ∈ {0,1}
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Node (and predictor) splitting

• X0 = α · 0x1 + 1 · 0x0

• X1 = α · 1x1 + 1 · 1x0

f (2)
0 = X0 ·X1

= (α · 0x1 + 1 · 0x0) · (α · 1x1 + 1 · 1x0)
= α2 · 0x1 · 1x1 + α · 0x1 · 1x0 + α · 1x1 · 0x0 + 1 · 0x0 · 1x0

= (α + 1) · 0x1 · 1x1 + α · 0x1 · 1x0 + α · 1x1 · 0x0 + 1 · 0x0 · 1x0

= α · 0x1 · 1x1 + 1 · 0x1 · 1x1 + α · 0x1 · 1x0 + α · 1x1 · 0x0 + 1 · 0x0 · 1x0

= α · ( 0x1 · 1x1 + 0x1 · 1x0 + 1x1 · 0x0) + 1 · ( 0x1 · 1x1 + 0x0 · 1x0)
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Future Directions
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Objective 1

• Dr. Peña’s lab is validating expression changes for Calca and

Pmch

• We are working with Dr. Giray to apply our techniques to

protein time series data from honeybee
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Objective 2

• Design univariate polynomial interpolation routines to learn

PFFN from data, given a data set with n genes, r repetitions

of t time points or conditions

• Current Boolean and PBN techniques require enumerating(
n
k

)
input functions, with k representing the genes that may

act on another gene, “reasonable” restrictions on k are un-

reasonable

• Interpolating rt candidate functions from the data is cheaper

if r, t << n as is currently the case

• Each candidate function can be selected with a probability

proportional to a correlation coefficient of the function to

the time course data, analogous to PBN
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Expected outcomes

• As predicted by our analysis, Pmch and Calca will be mod-

ulated by CTA training, and will be dependent on CREB.

We expect our error correction and clustering techniques to

result in a joint publication with Dr. Peña’s lab in 2006.

• We expect our error correction and clustering techniques to

yield insight into protein interaction networks

• We expect that PFFN will more accurately describe biolog-

ical systems than PBN

• We expect that univariate polynomial interpolation will prove

more efficient than partial enumeration techniques for the

construction of PFFN from microarray data
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Ethical issues

• Genetic testing: microarrays are used for diagnosis, can be

used to test for errors in transcriptional regulation

• Genetic engineering: knowlege of the transcriptional control

can be used to select for certain outcomes (bigger cows,

prettier children, ...)

• Reverse engineering: algorithms for reverse engineering gene

regulatory networks can also be applied to reverse engineer

hardware or software

• Cracking electronic communications: our techniques could

in principle be used to reverse engineer encryption systems

and eavesdrop on confidential information.
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