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1 Rationale

Microarrays allow researchers to simultaneously measure the expression of thousands of genes. They
give invaluable insight into the transcriptional state of biological systems, and can be important
in understanding physiological as well as diseased conditions. However, the analysis of data from
many thousands of genes, from only a few replications is very difficult.

The major goal of this proposal is to further develop information theoretic tech-
niques for microarray analysis, and specifically, to develop procedures to cluster gene
expression values and determine gene regulatory interactions.

We will use published microarray data sets, synthetic data, and a data set from learning and
memory processes in rats to test our procedures. In our preliminary data, we have devised a novel
method of correcting errors in microarray experiments, that also clusters genes into groups, and
categorizes their measurements into coarse divisions, suitable for discrete techniques for reverse
engineering. These techniques are based on finite fields and algebraic coding theory.

2 Background

cDNA microarrays are a technique for measuring the abundance of RNA from many thousands of
genes simultaneously in an inexpensive experiment (Schena, Shalon, Davis & Brown 1995). They
are used extensively for diagnostic purposes, and the data they allow researchers to collect have
permitted the study of genome wide interactions among genes. The analysis of microarray data,
however, is a difficult task, proving a fruitful area of research in numerous fields. An extensive
review is available in (de Jong 2002). This section will attempt to review the literature most
relevant to the proposed work.

2.1 Stages of microarray analysis

The analysis of microarray data is a complex, multi-stage process that typically involves the fol-
lowing steps:

1. microarray image analysis

2. normalization

3. detection of differential expression

4. clustering

5. biological network analysis

This proposal concentrates on the last two stages.

2.2 Clustering

Clustering of gene expression measurements is an important step in many analysis, most early
microarray work performed hierarchal clustering, where genes are successively agglomerated into
groups by selecting the two clusters whose average expression values are closest (Eisen, Spellman,
Botstein & Brown 1998). It is typical to first cluster genes before trying to determine the gene
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regulatory network by reverse engineering. Clustering helps reduce the computational resources re-
quired to analyze microarray data sets by grouping together many separate genes that demonstrate
similar patterns of expression (Akutsu, Miyano & Kuhara 1999). It also can help in determining
common functionality or common regulatory elements of genes which cluster together (D’haeseleer,
Liang & Somogyi 2000).

2.3 Genetic network models

As early as 1969 Stuart A. Kauffman (Kauffman 1969) (see (Kauffman 1993) for a detailed review)
proposed the far-reaching and important idea of using Boolean logic, the logic of computers, to
produce and gain insight into the logic of genes. The invention of cDNA microarrays brought a
resurgence of interest in these Boolean genetic network models.

2.4 Boolean models and the reverse engineering problem

A series of papers in 1998, 1999 and 2000 defined Boolean network models, reverse engineering, and
proved interesting results on the number of experiments required to completely define a Boolean
network.

Taking the model definition from (Ideker, Thorsson & Karp 2000), for example, we can describe
a genetic network as:

1. A graph consisting of N numbered nodes and, 1 ≤ n ≤ N .

2. A set of directed edges between nodes.

3. A Boolean function fn for each node.

An edge from a node to another represents an influence of the first node on the expression of the
second.

Figure 1 reproduced from (Ideker et al. 2000) represents a small example genetic network with
4 nodes and 4 edges.

1

0 2

3

1

1 1000

0010

x1 1 0 1 0
x2 1 1 0 0
x3 0 0 1 0

x0 := 1
x1 := 1
x2 := x0 ∧ x1

x3 := x1 ∧ ¬x2

Figure 1: Example of the Boolean steady-state network model: (a) a directed graph structure with
numbered nodes connected by edges, (b) the truth table (shown for node 3 only) and (c) the logic
equations for each node.

We understand that the following is a formalization of the model presented in (Ideker et al. 2000).
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Definition 1 A Boolean variable assumes the values 0,1.

Definition 2 A Boolean function is a function involving Boolean variables and the operations ∧,
∨, ¬ with the following definitions:

X Y X ∧ Y X ∨ Y ¬X

1 1 1 1 0
1 0 0 1 0
0 1 0 1 1
0 0 0 0 1

Definition 3 A dBnm is a set of n Boolean variables (x1, . . . , xn) which are inputs, and a set of
n Boolean functions which are the outputs (f1, . . . , fn). The Boolean variables represent genes or
stimuli, and the Boolean function fi represents how the gene i is determined by all the other genes.

Lemma 1 Given n Boolean variables (x1, . . . , xn) and define f(x1, . . . , xn) for all possible values.
Then there is a Boolean function that coincides with f as defined.

Proof: See any book on computer architecture (c. f. Patterson & Hennessy (1997)) for realizing
a Boolean function as sums of products and products of sums.

We will additionally define:
An expression matrix is a set of measurements (such as those which result from microarray

experiments) over the genetic network. From this expression data, the challenge is to reconstruct
or reverse engineer the genetic network.

A gene perturbation experiment is an expression matrix where some entries correspond to mea-
surements taken when the value of one gene or more are forced to a known state.

Akutsu, Kuahara, Maruyama & Miyano (1998) proved lower and upper bounds on the number
of gene perturbation experiments required to completely determine a gene network. The results
are discouraging, since in the general case, the problem is shown to be NP-complete. However,
in (Liang, Fuhrman & Somogyi 1998), an efficient algorithm for determining the gene network from
a set of input-output pairs is developed, assuming that each gene has an indegree in the directed
graph that is at most three. This restriction corresponds to saying that at most three genes have
an influence on the expression of the target gene. Further research proceeds on the assumption
that this indegree is bounded by a small constant. In (Akutsu et al. 1999) it is shown that a
gene network will be recovered with high probability in only O(log n) experiments if the indegree
is at most two. Ideker et al. (2000) provide an iterative procedure for selecting genes to perturb
while determining a genetic network such that the uncertainty in the specification of the model
is reduced. After this series of papers, work on these Boolean models was mostly discontinued,
biologists objected to the simplicity of the Boolean representation of genes.

It is also important to note that all of these Boolean network papers leave unspecified the manner
in which gene expression measurements are converted to Boolean values. For example, Ideker et al.
(2000) simply says that gene values will be approximated as high or low and represented by the
values 1 or 0.

4



2.5 Probabilistic models

Probabilistic Boolean networks, PBN, were developed in (Shmulevich, Dougherty, Kim & Zhang
2002, Shmulevich, Dougherty & Zhang 2002) to overcome problems encountered in the study of
gene expression data with Boolean networks. The principle problem PBNs address is the inher-
ent determinism of Boolean network models. PBN incorporate a stochastic process, to allow for
uncertainty in the data, and in the produced models.

PBN can incorporate many Boolean functions for a single gene, selecting among the multiple
functions according to a probability that corresponds to how well the function correlates to the
data.

PBN models of genetic networks can capture uncertainty in the specification of the genetic
networks, but are very computationally intensive (Suh, Dougherty, Kim, Bittner, Chen, Russ &
Martino 2002). The principal computational obstacle in PBN is the enumeration of all possible
functions controlling a gene. The usual solution is to partially enumerate all functions with a small
number of inputs.

2.6 Partial enumeration

In both the Boolean network models and PBN, reverse engineering via partial enumeration of
functions as described in (Shmulevich, Dougherty, Kim & Zhang 2002, Liang et al. 1998, Akutsu
et al. 1998) requires limiting the number of inputs to each genetic function, usually assuming that
between 2 to 4 genes affect the expression of a given gene. This requirement for computational
tractability directly conflicts with the evidence that transcriptional networks for higher organisms
are significantly more complex (Lemon & Tjian 2000, Merika & Thanos 2001), with even yeast
having up to 10 or more transcription factors influencing the expression of a single gene (Lee,
Rinaldi, Robert, Odom, Bar-Joseph, Gerber, Hannett, Harbison, Thompson, Simon, Zeitlinger,
Jennings, Murray, Gordon, Ren, Wyrick, Tagne, Volkert, Fraenkel, Gifford, & Young 2002).

2.7 Finite field genetic network models

Moreno has shown that any function over Boolean variables can be realized instead as a function
over the finite field Z2. In a natural manner, we can extend this to sets of Boolean functions, such as
those contained in a Boolean network model. The advantage of finite fields and vector spaces is that
they allow tools developed for cryptanalysis and communications theory to be applied to microarray
data. One such tool, the Finite Dynamical System (Moreno, Bollman & Aviñó 2002, Laubenbacher
& Pareigis 2001) (FDS) is of particular interest.

In Moreno, Ortiz-Zuazaga, Corrada Bravo, Aviñó-Diaz & Bollman (2004) we demonstrate how
to extend Boolean genetic networks into finite field deterministic genetic network models, first,
define a finite field over Z2:

Definition 4 + and · in Z2 are defined as follows:

X Y X · Y X + Y

1 1 1 0
0 1 0 1
1 0 0 1
0 0 0 0
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Remark 1 Z2 is a field with those two operations.

Definition 5 A polynomial function in the variables X1, . . . , Xn over Z2 is a multi-variable poly-
nomial in the variables X1, . . . , Xn.

Lemma 2 Given n variables over Z2 and define f(x1, . . . , xn) for all possible values then there is
a function over Z2 that coincides with f as defined.

Proof: note that for any two Boolean variables X, Y we have:

X ∧ Y = X · Y
X ∨ Y = X + Y + X · Y
¬X = 1 + X

Now if we are given the function f we first invoke Lemma 1 and realize it as a Boolean function.
Now using the above it is easy to see how we can realize it as a polynomial function over Z2.

Example 1 To illustrate let us work the example of Figure 1, that was given in (Ideker et al. 2000).
We have there f0 = 1, f1 = 1, f2 = x0 · x1, f3 = x1 · (x2 + 1). Note now they are multi-variable
polynomials over the finite field Z2.

Lemma 3 The set of Boolean functions coincides with the set of functions over Z2.

Proof: This follows from Lemma 1 and Lemma 2.

Definition 6 A finite dynamical system (FDS) is a pair (V, f) where V is the set of vectors over
a finite field GF(pn) and f : V → V .

Definition 7 A FDS (V, f) is linear if the function f is a linear function.

Theorem 1 The dBnm defined in (Ideker et al. 2000) is a Finite Dynamical System.

Proof: Note first, that the dBnm can be seen as a set of n functions over Z2, by Lemma 3. The
FDS over Z2 can also be seen as a set of n functions (in the n variables x1, . . . , xn) from Zn

2 to Z2.
Then, it is easy to see that they are in fact equivalent.

Example 2 Let us illustrate our theorem in the case of the example of Figure 1 (from (Ideker
et al. 2000)) and we will see that it is a finite dynamical system. Let V = Z4

2 in our definition of
FDS and let f = (f0, f1, f2, f3) where fi, i = 0, 1, 2, 3 are as it was given in the previous example.
Then it should be clear that f : Z4

2 → Z4
2 and that the example of Figure 1 is a FDS. The proof of

the theorem follows the same method.

Boolean networks and PBN then share 2 limitations: they can only represent genes as “on” or
“off”, and they limit the nature of the gene interaction network to ensure computational tractability.

Both these problems have been addressed by the formulation of polynomial models over finite
fields (Laubenbacher & Stigler 2001, Laubenbacher & Stigler 2003). These models allow for a richer
variation of gene expression levels, and remove the restrictions on the degree of the genes. These
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polynomial models, however, are more akin to Boolean network models than to PBN, as they are
deterministic, and cannot represent uncertainty in the data or network models.

Several alternative representations and techniques for polynomial models over finite fields have
been developed (Aviñó, Green & Moreno 2004, Green 2004, Moreno et al. 2002), and Bollman
& Orozco (2005) demonstrates that these polynomial models are equivalent to those described
in (Laubenbacher & Stigler 2003, Laubenbacher & Stigler 2004).

This research lead to a series of techniques for error-correction, clustering, and reverse engi-
neering based on finite fields. The current proposal seeks to extend these models, and produce new
biological insight from microarray data.

2.8 Microarray experiments

Microarray experiments were performed in the laboratory of Dr. Sandra Peña de Ortiz. Her lab
has kindly provided us with data sets for collaborative analysis. The methods described in this
proposal were developed for the purpose of analyzing these data sets, but are sufficiently general
to analyze any equivalent data set.

The studies described here focus on one cognitive task, conditioned taste aversion (CTA), as a
model system for gene expression profiling. CTA, is an associative aversive conditioning paradigm
in which pairing gastrointestinal malaise (induced by lithium chloride, LiCl, the unconditioned
stimulus) with prior exposure to a novel taste (the conditioned stimulus) may create a strong and
long lasting aversion to the novel taste.

CTA lends itself as an excellent model system to study the dynamics of gene regulation in learn-
ing and memory because it is a single trial associative learning paradigm, which involves discrete
regions in the brain, including selected amygdala nuclei (Yamamoto, Shimura, Sako, Yasoshima &
Sakai 1994, Yasoshima, Shimura & Yamamoto 1995).

2.8.1 Behavioral training

Behavioral training of rats in the CTA task prior to collection of the microarray data used for our
experiments was done as described in (Ge, Chiesa & Peña de Ortiz 2003).

2.8.2 Microarray measurements

The gene profiling experiment was replicated five times. Four animals were used per condition
for each replicate. Thus, a total of sixteen rats were used per condition. Animals were sacrificed
by decapitation at 1, 3, 6, and 24 hours after conditioning. Hybridization, image capture and
analysis was similar to the procedures described in (Robles, Vivas, Ortiz-Zuazaga, Felix & Peña de
Ortiz 2003). The data set thus obtained (CTA data set) is described in (Chiesa, Ortiz-Zuazaga, Ge
& Peña de Ortiz 2000). In summary, the data has two controls, the pre-treatment group and the
one hour saline group, and four time points, 1, 3, 6, and 24 hours after conditioning. Each array
has 1185 genes, and we have 5 replicates of the arrays.

3 Objectives

As stated in Section 1, our principal goal is to develop new techniques for analyzing microarray
data utilizing tools from information theory. These tools have been shown to be applicable to the
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analysis of microarray expression data. To accomplish our goal we propose the following objectives:

1. Previous Boolean network models assume the values for each gene have been discretized,
usually by thresholding, and no errors are present in the discretization. We have seen that
using multiple repetitions of an experiment, we can discretize a gene into several values, and
use majority logic decoding and other techniques to correct for errors in the microarray image
analysis and discretization procedures. Thus we propose to develop new algorithms and
heuristics for clustering and error correction, building on finite field models of
gene expression networks, and majority logic decoding.

2. We have seen that the computational tractability of Boolean and probabilistic Boolean ap-
proaches to the reverse engineering problem depend on the assumption that each gene is
influenced by a small number of other genes. This assumption is flawed, except perhaps in
the simplest of organisms. Multivariate finite field models of gene networks overcome this
restriction. We have seen that univariate finite field models are equivalent to multivariate
models, and may be simpler to manipulate. This thesis seeks to develop new algorithms
and heuristics for reverse engineering, extending univariate polynomial finite field
models to probabilistic models.

4 Methods and Preliminary Results

To accomplish our general goal of developing new techniques for the analysis of microarray expres-
sion data, we propose the following methods and experiments.

4.1 Error Correction and Clustering

We have devised a scheme for detecting and correcting errors using discretized data.
Here we apply our technique to data from one gene in the CTA data set described in Section 2,

to illustrate the method:
A01a glypican 1; HSPG M12; nervous system cell-surface heparan sulfate proteoglycan
Repetition Pre Sal 1 h 3 h 6 h 24h

1 0.172 0.099 0.176 0.142 0.062 0.152
2 0.274 0.168 0.126 0.114 0.104 0.276
3 0.003 0.119 0.552 0.178 0.193 0.114
4 0.114 0.139 0.6 0.311 0.179 0.181
5 0.04 0.006 0.172 0.103 0.036 -0.047

Each row is a repetition of the microarray experiment. Columns represent the measurements
of the genes. Pre and Sal are the pretreatment (time 0) and injection with saline solution controls.

4.1.1 Averaging

The first step in the analysis is to average the expression across repetitions.
average 0.121 0.106 0.325 0.17 0.115 0.135

We also average our control columns to obtain a control value of 0.113.
We compute an epsilon value, such that either the 1 h or 24 h columns are within the range of

control +/- epsilon. In this case, the epsilon is 0.022.
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4.1.2 Discretization

We proceed to discretize each repetition by comparing each column to the control +/- epsilon. We
illustrate for repetition 1:

Repetition Pre Sal 1 h 3 h 6 h 24h
1 0.172 0.099 0.176 0.142 0.062 0.152

The control for this repetition is (0.172 + 0.099)/2 = 0.1355, epsilon is fixed for all our tests at
0.022. We now call a column “+” if its value is greater than the control + epsilon, “-” if is is less
than control - epsilon, and “0” otherwise.

Repetition Pre Sal 1 h 3 h 6 h 24h
1 + - + 0 - 0

Repeating for the remaining repetitions yields;
Repetition Pre Sal 1 h 3 h 6 h 24h

1 + - + 0 - 0
2 + - - - - +
3 - + + + + +
4 0 0 + + + +
5 0 0 + + 0 -

4.1.3 Majority logic decoding

We now obtain a consensus for each column by majority logic decoding, 3 or more occurrences of
the same symbol in a column indicate that symbol is the consensus. If no consensus is obtained,
we indicate “?”.

Pre Sal 1 h 3 h 6 h 24h
consensus ? ? + + ? +

4.1.4 Discretizing versus averaged controls

The above procedure is very sensitive to the value of the controls. Errors in the controls can skew
the entire set of calls. We devised an alternate method of discretization that replaces the control
value for each row by the average of the control value for all the rows. In our case this average
control is 0.113. The discretization of the repetitions using this average control yields the following
values, which we summarize with this consensus versus average control (cvac):

Repetition Pre Sal 1 h 3 h 6 h 24h
1 + 0 + + - +
2 + + 0 0 0 +
3 - 0 + + + 0
4 0 + + + + +
5 - - + 0 - -

cvac ? ? + + ? +

4.1.5 Discretizing the average

We also compute the discretization of the average values of each column, using the control 0.113
and the epsilon 0.022:
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Pre Sal 1 h 3 h 6 h 24h
average 0.121 0.106 0.325 0.17 0.115 0.135

calls 0 0 + + 0 0

4.1.6 Error correction

We now enter an error correction phase, we seek out outliers in the data of the columns and remove
them, and recompute the average, controls, and epsilon.

Repetition Pre Sal 1 h 3 h 6 h 24h
1 — 0.099 0.176 0.142 — 0.152
2 — — 0.126 0.114 0.104 —
3 0.003 0.119 — — 0.193 0.114
4 0.114 0.139 — — 0.179 0.181
5 0.04 — 0.172 0.103 — —

With these outliers deleted from our data we now have new averages, control and epsilon values:
Pre Sal 1 h 3 h 6 h 24h

new average 0.052 0.119 0.158 0.12 0.159 0.149
new control 0.086
new epsilon 0.063
new calls 0 0 + 0 + 0

4.1.7 Consistent calls

We are now ready to produce a consistent set of calls for the gene. A set of calls is consistent if the
following conditions are met:

1. at least two of the above set of calls agrees in the last 4 columns of data (1 h, 3 h, 6 h, and
24h)

2. either the 1 h or the 24 h columns is a “0”

3. across the last 4 columns of data, the column exhibits the consecutive zeros property (i.e.,
values do not oscillate between “0” and “+” or “-”)

As an example, the set of calls for A01a are:
1 h 3 h 6 h 24h

consensus + + ? +
cvac + + ? +

average calls + + 0 0
new calls + 0 + 0

These calls are not consistent, and this gene is removed from further examination. Together,
the procedures we developed and the consistency criteria try to capture biologist’s intuitions on
the nature of gene expression changes.

4.1.8 Results of analyzing the CTA data set

We have performed the analysis described above on the CTA data set described in Section 2.8.2.
In this data set, there are 127 consistent genes, which we divide into clusters by grouping to-
gether the genes that have the same set of calls in the 1 - 24 hour timepoints. This results in
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23 clusters. We focus on the cluster labeled “000+”. The consensus of the calls for these genes
represents no change over the 1, 3, and 6 hour time points, followed by upregulation at the 24 hour
timepoint. This cluster consists of genes whose expression most closely matches the expression
profile of CREB. CREB is a transcription factor which we know to be required for long-term mem-
ory (Lamprecht, Hazvi & Dudai 1997). We investigated the genes in this cluster in depth, retriev-
ing the gene information and sequence from the Ensembl Genome Browser version 32 (Hubbard,
Andrews, Caccamo, Cameron, Chen, Clamp, Clarke, Coates, Cox, Cunningham, Curwen, Cutts,
Down, Durbin, Fernandez-Suarez, Gilbert, Hammond, Herrero, Hotz, Howe, Iyer, Jekosch, Ka-
hari, Kasprzyk, Keefe, Keenan, Kokocinsci, London, Longden, McVicker, Melsopp, Meidl, Potter,
Proctor, Rae, Rios, Schuster, Searle, Severin, Slater, Smedley, Smith, Spooner, Stabenau, Stalker,
Storey, Trevanion, Ureta-Vidal, Vogel, White, Woodwark & Birney 2005).

From Ensembl we obtained genomic sequence for each gene, 1020 base pairs starting 800 base
pairs upstream of the transcription start site. These sequences were then submitted to TESS (Schug
& Overton 1997) to search for transcription factor binding sites.

Two genes in particular caught our interest: Pmch and Calca. Both genes have CRE elements
in their upstream regions, meaning they are possible targets of CREB1 regulatory function. Ac-
cording to the Rat Genome Database (Rat Genome Database Web Site 2005), Pmch is a cyclic
neuropeptide that induces hippocampal synaptic transmission. It seems to have an effect on ap-
petite or metabolism (Pereira-da Silva, Torsoni, Nourani, Augusto, Souza, Gasparetti, Carvalheira,
Ventrucci, Marcondes, Cruz-Neto, Saad, Boschero, Carneiro & Velloso 2003) and anxiety (Kela,
Salmi, Rimondini-Giorgini, Heilig & Wahlestedt 2003), and promotes synaptic transmission in
the hippocampus (Varas, Perez, Ramirez & de Barioglio 2002). Calca is principally a vasodila-
tor, but seems to have a role in axonal regeneration or synaptogenesis (Li, Verge, Johnston &
Zochodne 2004). Thus these genes exhibit a pattern of expression consistent with the expression
of Creb1, have CRE elements upstream of their transcription start site, and seem to have a role
in strengthening or creating new synapses. Thus they are strongly implicated as important genes
for the formation of memories. Our collaborator, Dr. Sandra Peña de Ortiz, and her students are
actively seeking confirmation of these genes’ role in CTA. In collaboration with Dr. Moreno, we
will confirm the changes in expression of these genes and investigate their role in memory.

4.2 Probabilistic finite field network models

A Probabilistic Finite Field Network (PFFN) is an extension of Probabilistic Boolean Networks
(PBN) (Shmulevich, Dougherty, Kim & Zhang 2002, Shmulevich, Dougherty & Zhang 2002) to work
over values in finite fields, similar to how finite dynamical systems, as defined in (Laubenbacher &
Pareigis 2001) generalize Boolean dynamical systems.

A PFFN A = A(V, F ) is defined by a set of n nodes V = {x1, x2, . . . , xn} with values over some
arbitrary finite field GF(pm), and a list F = {F1, F2, . . . , Fn} of sets Fi = {f (i)

1 , f
(i)
2 , . . . , f

(i)
l(i)} of

functions over GF(pm). Each function f
(i)
j : GF(pm)n → GF(pm) is called a predictor. Each node

xi ∈ GF(pm) represents the state of gene xi. The set Fi contains the possible regulatory interactions
for gene xi. All genes are updated synchronously. At each time step, one of the predictors for gene
xi is selected randomly from the set Fi according to a predetermined probability distribution.

A realization of the PFFN at a given time is determined by a vector of field valued functions
fk = (f (1)

k1
, f

(2)
k2

, . . . , f
(n)
kn

) for i ≤ ki ≤ l(i) and f
(i)
ki

∈ Fi, fk : GF(pm)n → GF(pm)n acts as a
transition function, specifying the new value of each gene xi, and thus defining the dynamics of the
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system. The selection probability that a given predictor f
(i)
j is used to update the value of a gene

xi is equal to c
(i)
j = P{f (i) = f

(i)
j } = Σki=jP{f = fk}.

Two particular examples of finite fields are of particular interest, when the genes xi ∈ GF(3),
known as the ternary model. In the ternary model, we can capture the biological intuition of genes
being expressed, repressed, or unchanged. Another interesting variant is when xi ∈ GF(2m), as then
each gene can be modeled as a vector of m binary variables. Since in (Moreno et al. 2002, Moreno
et al. 2004) we demonstrate a mapping from models over GF(2) to Boolean networks, we can
immediately apply this technique to the study of Probabilistic Boolean Networks. For example,
a gene in a model with GF(pm) = GF(22) can be modeled as a pair of nodes (xi, xi′), with
xi, xi′ ∈ {0, 1}.

4.2.1 PFFN Example

We show an example constructing a PFFN over GF(22) and showing how to convert this PFFN to
a PBN.

Our PFFN A = (V, F ), with V = {X0, X1, X2, X3} the values of Xi ∈ GF(22), and F =
{F0, F1, F2, F3}, for our example, we have two functions in each set, and choose between them
with equal probability. Thus F0 = {f (0)

0 = 0, f
(0)
1 = 1}, F1 = {f (1)

0 = 0, f
(1)
1 = 1}, F2 = {f (2)

0 =
X0 · X1, f

(2)
1 = X0 + X1}, F3 = {f (3)

0 = X1 · (X2 + 1), f (3)
1 = X0 + X1}. Each predictor f

(i)
j

has an associated probability of being selected, c
(i)
j , in this simple example, c

(i)
0 = c

(i)
1 = 0.5 for

i = 0, 1, 2, 3.
Note that GF(22) can be represented as GF(22) = {0, 1, α, α2} where α is a root of the

polynomial z2 + z + 1 (with coefficients in Z2). By taking 1, α as a basis, we can say that
0 = (0, 0), 1 = (0, 1), α = (1, 0), α2 = (1, 1). Note also that α2 = α + 1 and α3 = 1. We will
use these equivalences to simplify expressions in the conversion.

We will split each node of V into a pair of nodes with values in GF(2), so Xi splits into ix1, and
ix0, or equivalently Xi = α · ix1 +1 · ix0. Each of the predictors will also be split into two functions
over GF(2). Take for example F2 = {f (2)

0 , f
(2)
1 } recall that f

(2)
0 = X0 · X1, we will substitute

X0 = α · 0x1 + 1 · 0x0 and X1 = α · 1x1 + 1 · 1x0. Thus

f
(2)
0 = X0 ·X1

= (α · 0x1 + 1 · 0x0) · (α · 1x1 + 1 · 1x0)
= α2 · 0x1 · 1x1 + α · 0x1 · 1x0 + α · 1x1 · 0x0 + 1 · 0x0 · 1x0

= (α + 1) · 0x1 · 1x1 + α · 0x1 · 1x0 + α · 1x1 · 0x0 + 1 · 0x0 · 1x0

= α · 0x1 · 1x1 + 1 · 0x1 · 1x1 + α · 0x1 · 1x0 + α · 1x1 · 0x0 + 1 · 0x0 · 1x0

= α · ( 0x1 · 1x1 + 0x1 · 1x0 + 1x1 · 0x0) + 1 · ( 0x1 · 1x1 + 0x0 · 1x0)

If we let 0f
(2)
0 = 0x1 · 1x1 + 0x1 · 1x0 + 1x1 · 0x0 and 1f

(2)
0 = 0x1 · 1x1 + 0x0 · 1x0, then we

have transformed the predictor f
(2)
0 into the two predictors 0f

(2)
0 and 1f

(2)
0 . In the PFFN, when

f
(2)
0 is selected as the predictor X2 = f

(2)
0 in our new PBN, 0f

(2)
0 will produce the value of 2x0,

and 1f
(2)
0 produces a value for 2x1. The probability of each of these new predictors is equal to the

probability of the original predictor, so P ( 0f
(2)
0 ) = P ( 1f

(2)
0 ) = 0.5

In the same manner, we can convert the other predictor, f
(2)
1 = X0 + X1 into two functions
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0f
(2)
1 = 0x0 + 1x0, and 1f

(2)
1 = 0x1 + 1x1. The predictors for each variable can be collected into

sets 0F2 = { 0f
(2)
0 = 0x1 · 1x1 + 0x1 · 1x0 + 1x1 · 0x0, 0f

(2)
1 = 0x0 + 1x0}. Thus, for each variable

Xi we will have two variables 0xi and 1xi, from each set of predictors Fi we will have two sets, 0Fi

and 1Fi of predictors.
Our completed example will thus be: A = (V, F ), we now have 8 nodes

V = { 0x0, 0x1, 1x0, 1x1, 2x0, 2x1, 3x0, 3x1}

, with 8 sets of predictors

F = { 0F0, 1F0, 0F1, 1F1, 0F2, 1F2, 0F3, 1F3}

, the predictors will be:

0F0 = { 0f
(0)
0 = 0, 0f

(0)
1 = 1}

1F0 = { 1f
(0)
0 = 0, 1f

(0)
1 = 0}

0F1 = { 0f
(1)
0 = 0, 0f

(1)
1 = 1}

1F1 = { 1f
(1)
0 = 0, 1f

(1)
1 = 1}

0F2 = { 0f
(2)
0 = 0x1 · 1x1 + 0x1 · 1x0 + 1x1 · 0x0, 0f

(2)
1 = 0x0 + 1x0}

1F2 = { 1f
(2)
0 = 0x1 · 1x1 + 0x0 · 1x0, 1f

(2)
1 = 0x1 + 1x1}

0F3 = { 0f
(3)
0 = 1x0 · 2x0 + 1x1 · 2x1 + 1x0, 0f

(3)
1 = 0x0 + 1x0}

1F3 = { 1f
(3)
0 = 1x0 · 2x1 + 1x1 · 2x0 + 1x1 · 2x1 + 1x1, 1f

(3)
1 = 0x1 + 1x1}

We will select the jth predictor for the bit b, of gene i, with probability P ( bf
(i)
j ) = bc

(i)
j = 0.5,

as before. We have in a sense, split each gene into two independent bits.

4.2.2 Transforming the general case

In general, we can take a PFFN over GF(pi) and split each node into i separate nodes. In the same
manner, each predictor may be split into i component parts by taking a basis, and establishing a
recurrence (such as α2 = α + 1 which we used in the above example). This kind of recurrence is
known to exist for any field, but the exact form depends on the field.

4.2.3 Restrictions on inputs

When building transcriptional networks, we may wish to place restrictions on the interactions
between genes. For example, we will allow a transcription factor t to act on a gene g only if
g has a transcriptional site for t. These types of restrictions can be imposed by restricting the
form of allowed predictor functions. Since the available information on transcriptional regulation
is incomplete, it is a challenge to incorporate information on allowed, prohibited, and mandatory
regulatory interactions, and to do so in an efficient manner.
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4.2.4 Remaining work

We will develop tools to perform reverse engineering of PFFN using the model outlined above, and
test those tools on the CTA data set.

5 Ethical Issues

This research, like all research raises ethical issues. Two particularly controversial topics related
to the research above are genetic testing and genetic engineering. Microarrays are already used or
proposed to diagnose certain conditions. The accumulation of more microarray data and advances
in analysis techniques would allow for screening for susceptibility to certain conditions. Access to
private genetic information needs to be strictly protected, and analysis routines have to be designed
to neither cause undue distress through false positives, nor a false sense of security due to false
negative results. The reverse engineering problem in microarrays pretends to allow us to model
cell processes leading to a condition. This knowledge could be used to target specific points in a
regulatory network to prevent disease, or to produce a desired outcome in the cell.

The other major ethical issue is that efficient algorithms for reverse engineering genetic networks
would likely be equally efficient at reverse engineering binary networks. Thus reverse engineering
digital hardware or “black-box” software could be sped up by using our techniques. Similarly,
many cryptographic protocols such as those protecting online commercial transactions are based
on the difficulty of determining a specific key used in a cryptographic function to transform in-
puts into outputs. An efficient reverse engineering algorithm could be used to decrypt sensitive
communications.
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